
UNDERSTANDING THE HLA
INTERFACE

(A JOB FOR THE INTELLIGENCE
ANALYST ?)

Duncan Clark
 Data Sciences (UK) Ltd

Meudon House, Meudon Avenue,
Farnborough, Hants,

GU14 7NB, UK
D.G.Clark@datasci.co.uk

Peter Hoare
 DRA Malvern

E211, DRA Malvern, St Andrews Road,
Malvern, Worcs,
WR14 3PS, UK

peteh@signal.dra.hmg.gb

KEYWORDS
HLA Interface, Practices

ABSTRACT
This paper describes the authors' attempts to
understand the HLA Interface with a view to
assessing how an existing simulation and modelling
framework could support HLA federation
development.

The exercise has been undertaken outside the main
HLA activities and has therefore relied on the
publicly available interface specifications. While the
interface was often quite specific, the information
available for assessing how a federate should operate
was often vague or open to misinterpretation. This
latter information had to be inferred by piecing
together bits of information from different parts of the
specification using similar techniques to that of an
Intelligence Analyst. The authors contend that many
issues related to the design of federations are outside
the scope of the HLA interface specification, but are
essential to the interoperability of HLA federates.

In order to fully understand the Interface, an analysis
has been undertaken of the RTI and its role in a
federation (using the Object Modelling Technique
notation). This identified the expected behaviour of a
federate as well as concisely documenting the
response of the RTI. Having been through this
exercise, the authors maintain that the interface
specification should include documentation to
illustrate how the interface should be interpreted and
how federates could achieve the benefits that HLA
offers.

1. PROJECT OVERVIEW AND OBJECTIVES

1.1 The existing Framework

Data Sciences have been developing Analytical
models for many years to support Operational
Analysis, COIEA and Engineering studies mostly in
support of UK MOD activities. Three years ago they
decided to develop a simulation and modelling
framework and library to support these activities.
This was the Library for Object Oriented Modelling
(LOOM).

The initiative was based on Object Oriented
Technology with similar high level objectives (on a
smaller scale) to those being sought with HLA.
Since its conception about 10 models have been
successfully produced, each with a high degree of
reuse of the central framework and concepts of
operation, yet each serving a very different
application.

The DIS architecture has been around for some time,
but was not seen as suitable for the constructive
simulations supported by LOOM. The High Level
Architecture, however, seemed to complement the
concepts within LOOM and provide scalability as
well as improved interoperability.

The objective was therefore set to examine how
compliant the LOOM concepts were with HLA and
how LOOM would support new simulations that
wished to interoperate using HLA.

1.2 Understanding the HLA

The first stage of the study was to understand the
High Level Architecture. Information was obtained
from the Internet mainly from the DMSO site[1], but
also the DIS mail reflectors (conferences).

Slide presentations from early briefings provided an
outline of how HLA was intended to work. The high
level concepts being proposed seemed easy to
understand, pragmatic and convincing in how they
would achieve the objectives being set for HLA.

The draft Interface Specification[2], Object Model
Template specification[3] and API also became
available on the Web soon after the start of the
project. This was the sole basis of our Analysts’
“Intelligence information”.

From this information we had to build a model of
how the RTI interface could work. We then tested
how a federate (or federation) would interact with the
RTI if it did work that way. When problems arose
we iterated round the loop again, changing either our

model of the RTI or the way the federates interacted
with it. When faced with the issue of not knowing
something about the RTI, the Intelligence Analysts’
premise of “How would I have done it?” was
applied.

While this was going on the RTI was still under
development. Many of our assumptions about how
the RTI would or wouldn’t work were proven to be
correct when the next release of the specification
appeared showing a feature already included in our
model.

1.3 Framework HLA Compliancy Assessment

In the early stages of the project we (naively) believed
that if we could identify the key interface requirements
being specified for HLA, we could produce a matrix
indicating which of those requirements LOOM (or
any other federate) could meet. Even if (as expected)
some of the requirements would not be met
immediately by the “candidate” simulation, the ease
with which they could be incorporated could be
assessed.

In practice we found that the HLA interface could be
interpreted in so many ways that it was very hard to
identify a set of interface “requirements” against
which a simulation could be assessed in any way. In
effect we needed a federation interface specification as
well as an HLA interface specification before we could
really look at any form of compliancy assessment.

In order to come up with a set of “federation”
requirements we looked at the typical simulations
that were already undertaken by LOOM, to see what
they had to do. Using our Intelligence Analysts
assumption that an HLA federation might do the
same thing we then postulated how the HLA Interface
would be used.

2. KEY ISSUES IN INTERPRETING THE
HLA SPECIFICATION

This section describes the main issues that the
authors had to address in order to understand the
HLA interface.

2.1 Simulation / Federation Management

In constructive analytical simulations, the current
main use of distributed processing is for speeding up
the simulation run. A distributed simulation
framework also offers advantages in interoperability
between simulations. In either of these cases, there
must be some control over which simulations are
actually running and how the workload is allocated to
different simulations.

As well as management of simulations joining and
leaving, there is usually a “control” within a
constructive simulation that manages the pausing /
resuming of simulated time, and saving / restoring of
simulation state.

Initially HLA seemed to provide no guidelines for
this control but about the time we were grappling
with the issue, the Interface Specification started to
include the “Federate (Manager)” as an initiator for
interfaces. From this we concluded that the HLA
team had agreed that “all simulations are equal but
some are more equal than others”.

2.2 FOM / SOM consistency

Having agreed the responsibilities of the simulations
in Federation Management, we then applied our
Intelligence Analyst approach to the problem of how
the different simulations would understand each other.
This now addressed the modelling domain and the
common language used to describe the objects and
attributes that each simulation understands: the
Object Model Template.

The basic features of inheritance and attributes seemed
straightforward until we tried to work out how each
simulation worked out which integer (according to
the API) corresponded to which ObjectClass and/or
attribute. There either had to be a compiled map that
must be used by each of the simulations, or the RTI
had to provide a Name to Integer (and vice-versa)
mapping service based on the loaded FOM. The
next release of the API contained mapping service
calls.

The second area of concern was that of “aggregation”.
The tables in the OMT show an aggregation facility
(although this is now “optional”). Early examples
were very confusing about how this table should be
interpreted, especially when inheritance was
concerned and when we found the structure of the
RID, there was no way the RTI could take any notice
of the tables. The implication was that each
SubObject had to be created individually; it was not
possible to create a ship, for example, and have all
the systems on that ship created automatically.

2.3 Scenario Management

Many DIS based simulations are explicit about the
objects they represent and there is no real opportunity
for any “scenario management” to be exercised. In
analytical applications it is vitally important that a
scenario be controlled, and hence repeatable to ensure
that the results can be fully understood. The HLA
seemed to offer no rules on how this should be
achieved although the attribute transfer facilities that
the HLA offers for scenario management appear very
powerful if they could be used effectively.

The model proposed was that some federate (probably
a federate manager) would undertake the bulk of the
initial object creation from a scenario database that
was under configuration management.

The objects identified could then be claimed or
allocated (for representation) using the ownership
management mechanisms. This was also seen as
having great potential for changing between levels of
fidelity in the models themselves.

2.4 Time Management

Many simulations have their own preferences for time
management mechanisms and the communities
involved with the HLA appear to divide up into
those using real time control (as in DIS) and those
that need to retain causality in the timing of events
occurring and being interpreted.

Early versions of the interface specification did not
indicate how causality would be maintained over a
distributed system nor what would be expected of a
federate in order to operate in this manner.

The Time Management Papers[4] provide clear
overviews of how both time management systems
would operate. However the API seems to have
lagged behind, implying that the RTI might not fully
support all these mechanisms.

3. HLA COMPLIANCY ASSESSMENT

This section identifies the way the authors looked for
HLA compliancy in the LOOM framework.

3.1 Model Class and Attributes Structure
Mapping Capability

One of the key rules of the HLA is the ability to agree
to a common Federation Object Model. This
implies that a federate should have a mapping facility
between its own model objects and attributes and the
indexing systems used within the HLA.

This was provided in LOOM by a concept named
“Model Characterisation” which provides complete
descriptions of each class’s attributes, relationships
and inheritance hierarchies. This is used primarily to
support graphical data entry and display and reporting
facilities but could easily be extended to support the
publish and subscribe interfaces.

3.2 Object Management capability

A key issue in the HLA is the ability to dynamically
respond to objects appearing in and disappearing from
the scenario. Similarly the HLA requires that
simulations need to be able to take over, or allow

another model to take over, individual object
attribute modelling.

To check compliancy in this area we looked for
mechanisms within LOOM that would allow
“objects” to be created according to specified generic
types. Model Characterisation would allow each of
these to have different data driven behaviour and
indeed different structures. The granularity of the
model structure would need to be finer than the
Object classes since each attribute that could be
transferred would need to be derived in a separate
entity to allow it to be separated out from the main
object processing and updated by an external model.

3.3 Control of Attribute Updates and
Interactions

Any simulation will update the internal variables
representing the modelled object attributes in
response to its interactions with other modelled
objects.

For compliancy we were looking for a simple way in
which the model could inform the outside world that
the attribute has been changed (and vice-versa).
LOOM offers a facility for registering interests in
characterised attributes, allowing the model (or the
RTI) to be informed whenever that attribute is
altered. This provides an effective manner in which
attribute updates can be supported.

Interactions imply some sort of event notification and
processing in the candidate federate. The LOOM
framework supports the concept of critical events.
These can be raised by a model (on detecting an
interaction) and (like the attributes) cause a registered
routine to be run when they occur and hence invoke
the send_interaction call. Similarly a
receive_interaction can raise a critical event when it is
called and thus inform other models within the
LOOM simulation.

3.4 Time management compatibility

Most of the simulations supported by the LOOM
framework are not real time but do need to maintain a
strict sequence of events. In order to assess time
management compliancy we needed to decide what
scheme we ought to be using. This would not be
real time so some form of causal time management
should be sought.

Since there was originally no support for distributed
simulation in the LOOM framework, the concept of
lookahead was not catered for. While zero lookahead
schemes would probably work this would not operate
very efficiently in a distributed environment. Other
mechanisms for obtaining a lookahead were also
investigated such as examining the event queue.

4. THE HLA INTERFACE SPECIFICATION
MODEL

4.1 The HLA Object Model

The first stage in analysing the interface was to try to
visualise the structure of the key objects within a
federation. This was undertaken using a tool called
Select OMT Professional, which follows the Object
Modelling Technique method by Rumbaugh et al
[5]. This object model is shown in figure1. Note
that although the Federation and RTI are shown in
the diagram they do not really exist as real objects.
The diagram just attempts to indicate which classes
are considered to be in these groupings.

On the diagram the boxes represent classes and lines
represent relationships with arrows indicating
direction of association. Inheritance is indicated by
the triangle symbol, while aggregation is indicated
by the diamond symbol on the composite class.
Multiplicity is indicated with a circle at the end of a
relationship.

rti_executive

federation_execution

rti_ambassador

simulation_ambassador

Federation

FederateSimulation

RTI

Federations

Federates

Figure 1 HLA Object Model
Having identified these key objects and how they fit
together, the Interface specification was then examined
together with the API, to clearly define the operations
that were considered part of the interface, and to map
those onto the RTI object classes and the
simulation_ambassador as shown in figure 2 for the
federation_execution class.

federation_execution

DiscoveryScheme
ExecutionDetails
FederationName
number_of_joined_simulations
pause_resume_state
save_restore_state
TimeManagementScheme
change_federation_rate
change_federation_time
destroy_federation_execution
federation_execution
find_ambassador
initialize_federation_time_and_rate
request_pause
request_pause_now
request_restore
request_resume
request_resume_and_next_pause
request_resume_now
request_resume_now_and_next_pause
resign_federation_execution
resign_federation_execution_with_action
schedule_federation_save
~federation_execution

 Class Name

 Attributes

 Operations

Figure 2 OMT Class Notation

By including the interface specification
documentation in the database, together with the
Interface Definition Language (IDL) in the API, and
more recently C++ operation signatures, a readily
maintainable, compact definition of the interface is
obtained. This can be displayed within the class on
the diagram giving a very quick overview of the
actual operations and attributes of the class. The
detailed information is maintained in the database and
may be accessed directly by clicking on the method,
or generated in reports. This gave us a model with
which we could start to “experiment”, to find out
how the RTI could operate and be used.

4.2 The Federation Object Model

The other important aspect of the HLA interface is the
Object Model Template. Although this is specified
in table form, the concepts lend themselves to
representation in the Select Database as shown in
figure 3.

Building this structure up also identifies the data
structures that may be used within the DFOM or read
in through the RID. However the format of the RID
indicates that not all this information is actually read
in and hence implies constraints in the way that the
RTI operates.

First, there is no mapping between the ID used in the
RTI to identify FOM Object types (ObjectClass,
AttributeName, etc.) and the actual name (Image)
used in the FOM and RID. While there are now
access procedures to convert between them, two
independent federates must either both use these or
else use the same RID reader and same file to generate
an identical map within themselves.

Second, the Component Structure Table does appear
in the RID. This implies that if any composite
object is created, the subobjects must also be created
by the federate: they do not get created automatically.

Very few of the Parameter and Attribute fields are
used. It must be assumed that simulations “hard
code” this information (especially type information)
into their interfaces. This would imply that receiving
simulations should check that the supplied
information does adhere to the “agreed” field values.

It is noted that the SOMs now have an option for
indicating Publish and Subscribe capability. While
this information is important for the design of a
federation, it appears to duplicate the information
passed at runtime with class based Object declaration
calls.

FOM_Object

definition
FOM_ID
Name/Image

FOM_ObjectClass

associations
attributes
components
composites
subclasses
superclasses

FOM_AttributeName

accuracy
accuracyCondition
datatype
objectClass
resolution
transferability
units
updateRateCondition
updatetype

FOM_InteractionClass

generalisation
initiatingclasses
initiatingclassesaffectedattributes
parameters
receivingclasses
receivingclassesaffectedattributes
specialisations

FOM_ParameterName

accuracy
accuracyCondition
datatype
interactionClass
resolution
transferability
units
updateRateCondition
updatetype

FOM_Association

firstClass
secondClass

DFOM

GetFOMImage
GetFOMObject

Class Structure
Table

Component
Structure Table

SecondClass

InteractionStr-
ucture

InteractionPar-
ameters

InitiatingObje-
ctClass

ReceivingObjec-
t/AreaClass

InitiatingObjectA-
ffectedAttributes

ReceivingObject/Are-
aAffectedAttributes

AttributeTable

First Class

Figure 3 Object Model Template Object Diagram

4.3 The RTI expanded Model

Through this modelling a better picture evolved of
what information the RTI was actually passing
through its interfaces. This led to assumptions about
what the RTI would do with the information and
how it would maintain its “databases”. While the
actual implementation of the RTI is likely to be
complex due to its distributed nature, the logical data
structures needed to support the databases and the
RTI operations can be quite simple, as shown
overleaf.

By treating the RTI as a monolithic object, the
availability of information can be traced, which in
turn provides clues as to the sequences in which calls
may be made. The results of this investigation are
shown in the Use Case diagrams in the next section.

RTI_Database

ObjectID

Attributes
ID
ObjectClass
OwningSimulation

ObjectClass

DFOM

AttributeName

AttributeValue

AttributeID

AttributeName
AttributeValue
OwningSimulation
SubscribingSimulations

SimulationId

FederateID
FederateName
RTIAmbassador
SimulationAmbassador

InteractionID

Initiator
InteractionClass
Parameters
Receiver

InteractionClass

ParameterNameParameterID

ParameterName
ParameterValue

ParameterValue

ObjectDeclaration

PublishingSimulations
SubscribingSimulations

Objects

ObjectClass

Attributes

AttributeName

Simulations

OwningSimulati-
on

OwningSimulati-
on

Interactions

InteractionCla-
ss

ParameterName

PublishingSimu-
lations

SubscribingSim-
ulations

SubscribingSim-
ulations

DFOM

Figure 4 RTI Database Object Model

5. THE FEDERATION USE CASE
SCENARIOS

Having built a model of the RTI operations the next
stage in understanding the model was to “simulate”
the calls that a federate should make to the RTI and
what would happen as a result of those calls. This
“simulation” also investigated what was expected of
a federate, when called, in order to achieve the
objective of the RTI.

Each of the main areas of the interface were simulated
with a Use case diagram as shown in the following
subsections. (Different ways of using the RTI could
be expanded into more Use cases).

The Use case diagrams show the interactions between
objects (each arrow is a call to the method indicated
on the object pointed to). Time sequences go down
the page. Classes or objects to the left of the vertical
line are considered outside the RTI system boundary.
Calls back to the federate occur though the
simulation_ambassador on the right hand side, but
continue from the federate itself on the left hand side.

There is no commentary on the Use Cases, since the
authors believe that they should tell their own story.
It is important to point out that this is a current
understanding of what should occur and as work
progresses and the model becomes more developed,
these diagrams will be updated.

5.1 Federation Management

Description

Create the federation

rti creates the federation
execution
Create Sim ambassador

Simulation Joins

Create rti ambassador

Pause the simulation

Federate gets paused

Federate succeeds in pausing

Federation Resumes simulation

Federate gets resumed
Federate completes the resume

Do the declaration Management
Federation Save initiated

Tell federates to start the save

Federate acknowledges it is
starting to save
Federate has completed save
Federation initiates a restore

RTI instructs federates to restore

Federate indicates it has
completed restore

Federation submits a query
RTI directs query to a federate
RTI returns query result to
Fedearation

Federation resigns federate

Federation removes a simulation
fed ex redoves fed from
federation

Simulation closes down

Federation Closes down

Federation closes down

Federate Manager

Federate Manager

FederateSimulation

FederateSimulation

(simulation_ambassador)
Federate Manager

Federate Manager
(simulation_ambassador)

(rti_ambassador)
Federate Manager

Federate Manager
(rti_ambassador)

rti_executive

rti_executive

federation_execution

federation_execution

(rti_ambassador)
Federate Simulation

Federate Simulation
(rti_ambassador)

(simulation_ambassador)
Federate Simulation

Federate Simulation
(simulation_ambassador)

Lifecycle

create_federation_execution
federation_
execution

join_federation_execution

simulation_ambassador

rti_ambassador

resign_federation_
execution

resign_federation_execution

destroy_
federation_
execution

~simulation_ambassador

destroy_federation_execution

request_pause

pause

pause_achieved

request_resume

resume
resume_achieved

schedule_federation_save

start_federation_save

federation_save_begun

federation_save_complete
request_restore

restore

restore_complete

submit_query
query

query_result

Figure 5 Federation Management Use Case

5.2 Declaration Management

Description

START UP

Identify ObjectClass Ids

Identify Attribute Name Ids

Identify Interaction Class Ids

FOR each Published Object
Class

Publish Object Classes that
can be instantiated

Subscribe to any other
attributes not published

NEXT Published Object
Class

FOR each Subscribed Object
Class

Subscribe Object Class

RTI Tells Publisher of first
Subscription

Publish Attributes for
reflected Classes.

NEXT Object Class

FOR Each Interaction Class

Publish Interaction Classes

Subscribe Interaction Class

RTI tells Publisher of first
subscription

NEXT Interaction Class

FederateSimulation

FederateSimulation

rti_ambassador

rti_ambassador

simulation_ambassador

simulation_ambassador

DeclarationManagement

publish_object_
class

subscribe_object_
class

subscribe_
interaction_class

publish_object_
attributes

publish_
interaction_class

get_object_class

get_attribute_
name

get_interaction_
class

start_class_
updates

start_
interaction_
generation

subscribe_object_
attributes_by_
class

Description

DURING SIMULATION

Subscribe to Attributes of
specific objects

RTI Tells Publisher of first
subscription

Unsubscribe object attributes
by object

Tell Publisher of last
unsubscribe

CLOSE DOWN

FOR Each Published Object
Class

unpublish object class

Unsubscribe any other
attributes

NEXT Object Class

FOR Each Subscribed Object
Class

Unsubscribe Object Class

RTI tells Publisher of last
unsubscribe

Unpublish other object
attributes

NEXT Object Class

FOR Each Interaction Class

Unpublish Interaction Class

Unsubscribe interaction
class

RTI tells Publisher of last
unsubscription

NEXT Interaction Class

FederateSimulation

FederateSimulation

rti_ambassador

rti_ambassador

simulation_ambassador

simulation_ambassador

DeclarationManagement

unpublish_object_
class

unsubscribe_
object_class

unpublish_
interaction_class
unsubscribe_
interaction_class

unpublish_object_
attributes

subscribe_object_
attributes_by_id

start_
object_
updates

stop_class_
updates

stop_
object_
updates

stop_
interaction_
generation

unsubscribe_
object_attributes_
by_class

unsubscribe_
object_attributes_
by_id

Figure 6 Declaration Management Use Case

5.3 Object Management - Creation and Deletion

Description

Create the Object of the desired
class locally

Get hold of the next free Object
ID

Link the supplied object ID to the
created class

Tell the other federates about the
object thats been created

RTI gets the Attribute values from
the creating simulation

Initiating Federate supplies
values

FOR each Subscribing Federate
whose Discovery Predicates are
met

RTI notifies other federates

Next Subscribing Federate

NORMAL ATTRIBUTE UPDATES
OCCUR

IF an update results in the object
no longer satisfying the
subscribers discovery predicate

Tell the subscriber to ignore the
object

ELSE IF update results in the
object satisfying the subscribers
discovery predicate

RTI notifies other federates

END IF

Object deleted by Federate

RTI informs other federates

FederateSimulation

FederateSimulation

rti_ambassador

rti_ambassador

(simulation_ambassador)
Initiating Federate

Initiating Federate
(simulation_ambassador)

(simulation_ambassador)
Receiving Federate

Receiving Federate
(simulation_ambassador)

ObjectCreation/Deletion

id_request

instantiate_object

instantiate_discovered_object

provide_
attribute_
values

delete_object

remove_object

update_attribute_
values

instantiate_discovered_object

remove_object

Figure 7 Object Creation and Deletion Use Case

5.4 Object Management - Control of Updates

Description

NORMAL UPDATE

FOR each Update

Inform RTI about changed
values

RTI calls responding simulation

Federate gets updated

NEXT Update

HALTING Object Updates

Responding Federate tells RTI it
no longer wants updates

RTI no longer sends reflect_
attribute_values

PULL INVOKE UPDATE (NOT
reccomended)

FOR Each Update request

Simulation wants updated data

RTI distributes request

Get attributes from owning
simulation

Sends new data

RTI returns the data to initiator

And hence back to Simulation

NEXT Update request

CANCELLATION OF UPDATES

Federate is no longer interested
in an object

RTI acknowledges that the
Federate can remove the object
from its "known" list

INTERACTIONS
(note there are 4 variants of this)

Federate identifies that an
interaction between two objects is
to take place.

RTI tells subscriber about the
interaction

(FederateSimulation)
Initiating

Initiating
(FederateSimulation)

(FederateSimulation)
Responding

Responding
(FederateSimulation)

(simulation_ambassador)
Initiating

Initiating
(simulation_ambassador)

(rti_ambassador)
Initiating

Initiating
(rti_ambassador)

(simulation_ambassador)
Responding

Responding
(simulation_ambassador)

(rti_ambassador)
Responding

Responding
(rti_ambassador)

ControlUpdates

update_attribute_values

reflect_attribute_
values

SetAttributes

obtain_attribute_values

provide_
attribute_values

GetAttributes

update_attribute_values

reflect_attribute_values

SetAttributes

cancel_object_attribute_updates

send_interaction

receive_
interaction

remove_object

cancel_object_attribute_updates

Figure 8 Attribute Update and Interaction Use
Case

5.5 Ownership Management

Description

DIVESTITURE

Federate wants to get rid of
providing updates for an attribute

or more strongly

RTI finds another federate that
could do it

RTI tells the federate which
attributes it has been given

or rejected

Initiating federate notified of
divestiture

or not

ATTRIBUTE ACQUISITION

Federate wants to acquire
ownership of an attribute

RTI finds the Federate that owns
it

RTI notfies federate if acquisition
has been granted

or rejected

OBJECT ACQUISITION

Federate wants to acquire
ownership of an object

RTI Finds the federate that owns
it

RTI notifies federate if acquisition
has been granted

or not

QUERY

Federation enquires about
attribute ownership

Federate Manager

Federate Manager

(FederateSimulation)
Initiating Federate

Initiating Federate
(FederateSimulation)

(simulation_ambassador)
Initiating Federate

Initiating Federate
(simulation_ambassador)

OwnershipManagement

request_attribute_ownership_divestiture

request_attribute_ownership_acquisition

unconditional_attribute_ownership_divestiture

query_attribute_ownership

request_delete_privilege_acquisition

Figure 9 Ownership Management Use Case

5.6 Time Management

Description

Initialise Federate time and rate

Change federate Time

RTI informs federate of new time

Change Federation Rate

RTI Informs federates of new rate

Federate wants to know the time

Federation wants to know the
federation rate

Federate Changes its lookahead

Federate Wants to find out its
lookahead

Federate has finished processing
up to its current time and wishes
to advance time.

FOR each event < requested
Time

Messages are passed to the
federate

NEXT Event

RTI grants the time advance back
to the federate.

Federate has finished its current
processing and wants the next
event. This seems equivalent to
the time advance request but only
gets one event.

Messages are passed to the
federate

Federate wants to retract a
scheduled event

RTI cant find retracted event so
tells the receiving federate to do
it.

Federate Manager

Federate Manager

(FederateSimulation)
Initiating Federate

Initiating Federate
(FederateSimulation)

(rti_ambassador)
Initiating Federate

Initiating Federate
(rti_ambassador)

TimeManagement

change_federation_rate

initialize_federation_time_and_rate

change_federation_time

request_
federation_time
request_
federation_rate

time_advance_
request

next_event_
request

set_lookahead

request_lookahead

Figure 10 Time Management Use Case

6. CONCLUSIONS

6.1 Recommendations for Federate HLA
compliancy assessment

The original objective of the study was to examine
how compliant LOOM based simulations were with
the HLA interface. The easy answer to this is: it
must obey all the rules, implement the
simulation_ambassador methods needed and call the
RTI class methods needed. However, most existing
simulations will not have been designed to
implement these methods and although the calls may
be added, the simulations’ concept of operation may
not be integrated with the interface.

Compliancy assessment therefore needs to investigate
how close a simulation is to the HLA concepts of
operation. This means assessing how easy it is to:
• make specific object attributes available

externally;
• identify where in the internal model hierarchy an

incoming attribute / object change would be;
• trigger external methods whenever those attributes

change;
• identify when interactions have occurred;
• process triggers indicating that interactions have

occurred;
• dynamically change the entities being represented

due to creation / deletion;
• split the modelling of object attributes to support

attribute ownership transfer.

In many ways provision of these facilities is more
valuable than the actual adherence to a full interface
specification, since it would be very easy to write a
model that adhered to the specification but did
absolutely nothing. In effect we are trying to place a
higher level behaviour specification on the federate
and it is this that should be taken into account in the
Compliancy assessment.

6.2 Recommendations for HLA interface
documentation improvements

Having tried to understand the HLA interface both
from the perspective of how the RTI behaves and how
a federate should use it, the authors believe that the
current documentation is missing some useful
information. While we appreciate that in its early
days the interface was intended to be non-prescriptive
to encourage industry to discover the best ways of
using it, there are certain constraints that must be
met. These are due to the way the RTI itself has
been implemented, and due to the way a federation
intends operating.

As mentioned previously there tend to be a few
distinct ways of operating simulations (DIS, ALSP,
etc.) and showing how the current RTI would
support these methods of simulation would rapidly
present the interface in terms the user understands.

The object models demonstrated here would go a
long way to providing an overview and index into
the architecture and interface operations. The Use
case diagrams provide the examples of behaviour that
supply the missing information. Finally if the Select
OMT Tool were available, and the interface
documentation were released as a database, the
interaction with the database allows concepts to be
rapidly understood and imported directly into new
federate designs.

6.3 Summary

This exercise has been both stimulating from an
Intelligence Analysts’ viewpoint and frustrating from
an engineering viewpoint.

The omissions from the specification are a challenge
to think about what it is you want to do, rather than
what you are told to do. You have bits of
information that make up part of the picture and then,
to fill in the rest, you have to hypothesize or guess
and then test the guess against the rest of the
knowledge you have.

It is frustrating too since having spent significant
effort deducing how the RTI must work and
engineering a federate design to conform to this, a bit
more information appears that would have made the
whole job much easier.

As with most Intelligence information, it is only
worthwhile if it is used. So rather than leave this
study on a shelf somewhere and just read the next
version of the HLA Specification, we offer our
Intelligence Analysis as a basis for others to build on.

6.4 Acknowledgments

The authors wish to thank the War Gaming and
Simulation Centre, CDA and Technology Group 10
of the UK MOD for sponsoring this work.

7. REFERENCES

1. http:\\www.dmso.mil
2. DMSO DOD High Level Architecture For
Simulations Interface Specification.
3. DMSO DOD High Level Object Model Template
4. HLA Time Management: Design Document
5. Object-Oriented Modelling and Design -
J. Rumbaugh et al. ISBN 0-13-630054-5

 British Crown Copyright 1996 / DERA.
Published with the permission of the Controller of

Her Britannic Majesty’s Stationary Office.

